检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《智能建筑电气技术》2015年第6期58-61,74,共5页Electrical Technology of Intelligent Buildings
摘 要:对空调负荷进行准确预测不仅对优化空调控制的意义重大,也是实现空调经济运行与节能的关键所在。为了提高建筑空调负荷的预测精度,在分析最小二乘支持向量机建模特点的基础上提出了利用PSO-SA优化的一种空调负荷预测算法。该方法利用粒子群—模拟退火方法对最小二乘支持向量机的参数进行优化选择,提高模型的精度和泛化能力。通过空调负荷预测建模的结果表明,该方法具有学习速度快、跟踪性能好以及泛化能力强等优点,为实现空调系统的优化运行奠定了基础。Accurate prediction of air-conditioning load is not only very important for the optimal control of centre air-conditioning system, but also for the economical running and energy saving of air-conditioning system. In order to improve the accuracy of the forecas- ting of building air conditioning load, a LSSVM prediction model is established based on the optimization of PSO-SA. The particle swarm optimization simulated annealing (PSO- SA) was used to select the optimal parameters of LSSVM model and improve improving the precision and generalization ability of the model. Air-conditioning load prediction modeling result indicates that this method features high learning speed, good approximation and well generalization ability. It provides good basis for the optimization of air-conditioning load.
分 类 号:TU831.2[建筑科学—供热、供燃气、通风及空调工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222