检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《长江科学院院报》2015年第12期82-86,共5页Journal of Changjiang River Scientific Research Institute
基 金:国家自然科学基金资助项目(51204098)
摘 要:采用神经网络进行土质边坡稳定性评价时,差异性较大的训练样本往往会使评价结果不太理想。针对这一问题引入C4.5决策树算法,采用多个土质边坡工程的实测数据,运用信息增益率进行分类属性的选择,并对建立好的树体结构进行剪枝操作,建立基于决策树的土质边坡稳定性评价模型。将该模型与BP神经网络和LVQ(Learning Vector Quantization,学习向量量化)神经网络进行对比分析,结果显示决策树模型分类正确率最高,达到90%,模型所用时间为2.24 s,表明把决策树用于土质边坡稳定性评价是合理的。When the soil slope stability is evaluated by neural network model,varieties of training samples always make the evaluation result unsatisfactory. In order to solve the problem,we introduce the C4. 5 decision tree algorithm,build an evaluation model of soil slope stability based on decision tree classifier,and prune the tree structure established. Furthermore,we adopt measured data in several soil slope projects and select classification attributes according to gain ratio of information in this model. Compared with BP neural network and LVQ( Learning Vector Quantization) neural network,the result shows that decision tree algorithm has the highest accuracy for classification,up to 90%,and the computation time of this model is 2. 24 seconds. Finally,it is feasible to introduce decision tree algorithm for stability evaluation in soil slope.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:52.14.145.78