检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张淑清[1] 李盼[1] 冯璐[1] 李男[1] 张航飞[1] 乔永静[1] 徐剑涛[1]
机构地区:[1]燕山大学电气工程学院
出 处:《计量学报》2016年第1期90-95,共6页Acta Metrologica Sinica
基 金:国家自然科学基金(61077071);河北省自然科学基金(2015203413);河北省高等学校科学技术研究重点项目(ZD2014100)
摘 要:提出一种基于局部均值分解方法(LMD)能量熵和GK模糊聚类相结合的电能质量扰动识别的新方法。LMD能量熵具有局域化的特性并且能够表征扰动信号复杂度,可以量化扰动特征。GK模糊聚类可处理分布不规则数据,因此可对各种扰动信号进行识别。非平稳的扰动信号首先由LMD分解,得到若干个有物理意义的乘积函数(PF),通过Shannon熵的特征筛选方法对PF分量进行筛选,求取其能量熵组成特征向量。进而通过GK聚类对特征向量进行识别分类。实验表明,该方法能够有效准确地识别电能扰动信号,并具有良好的抗噪性。A new approach for power quality disturbance identification based on local mean decomposition (LMD) energy entropy and GK fuzzy clustering is introduced. LMD energy entropy has localized features and can represent the complexity of disturbance signals, quantizing disturbance characteristic. GK fuzzy clustering can process data with irregular distribution, so as to identify various disturbance signals. Non-stationary disturbance signals are decomposed by LMD, obtaining a number of product function (PF) components with physical meaning, which is screened out by Shannon entropy feature selection methods to obtain the energy entropies and construct the eigenvectors. The constructed eigenvectors are further put into GK classifier to recognize different identification types. The experiment demonstrated that the method is able to identify disturbance signals accurately, with better anti-noise performance.
关 键 词:计量学 电能质量扰动信号 局部均值分解 能量熵 GK模糊聚类
分 类 号:TB971[一般工业技术—计量学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117