检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机工程与应用》2016年第2期54-60,共7页Computer Engineering and Applications
基 金:中央高校基本科研业务费专项资金(No.1142050205135260;No.JUSRP51317B);国家自然科学基金(No.11371174)
摘 要:针对标准粒子群优化(PSO)算法早熟收敛及易陷入局部极值的缺点,提出一种基于环形邻域的混沌粒子群优化算法RCPSO,并将其应用于求解数据聚类问题,而且通过在4个数据集上进行仿真实验验证了算法的有效性。实验表明,当邻域大小为整个种群规模的1/3时,基于静态邻域和基于随机邻域的算法在4个数据集上的整体聚类效果均达到最好。RCPSO算法利用适当规模的环形邻域提高了粒子群的全局寻优能力,并利用混沌因子增强了粒子收敛过程中种群的多样性,从而避免算法的早熟收敛。另外,与K-means、PSO、K-PSO及CPSO算法的实验结果进行比较表明,RCPSO算法在错误率方面表现得更好,因此该算法为聚类问题提供了一种切实有效的解决方法。In order to overcome the drawbacks of the standard Particle Swarm Optimization(PSO)such as prematurity and easily trapping into local optima, a Ring neighborhood based Chaotic Particle Swarm Optimization(RCPSO)algorithm is proposed and then applied to data clustering problems, and the feasibility and efficiency of the proposed algorithm is validated on four data sets. The experimental results show that when the neighborhood size is set to one third of the population size, the algorithm with statistic ring neighborhood and the one with random ring neighborhood can both achieve overall best results on all the four data sets. RCPSO improves the global searching ability of the swarm by using appropriate size of ring neighborhood, and enhances the diversity of population with chaotic factor so as to avoid premature convergence.Furthermore, the comparison results show that RCPSO outperforms four popular algorithms in the literature(K-means,PSO, K-PSO and CPSO)in terms of error rate, which indicates that RCPSO offers an effective solution method for clustering.
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15