基于PSO-SVR动态模型的车辆排队长度预测  被引量:3

Vehicle queue length prediction based on PSO-SVR dynamic model

在线阅读下载全文

作  者:孙文兵[1] 彭跃辉[2] 

机构地区:[1]邵阳学院理学与信息科学系,湖南邵阳422004 [2]邵阳学院信息工程系,湖南邵阳422004

出  处:《计算机工程与应用》2016年第2期239-243,共5页Computer Engineering and Applications

基  金:湖南省自然科学基金(No.12JJ3008);湖南省科技厅计划项目(No.2012FJ3106)

摘  要:针对突发事件下城市道路车辆排队系统的特点,从时空角度综合考虑车辆排队系统的影响因素,建立支持向量回归(SVR)动态模型对车辆排队长度进行预测。考虑到参数选择对模型性能影响的敏感性,提出了以k折交叉验证(k-CV)均方误差平均值为适应度的粒子群优化(PSO)方法并对SVR模型参数进行寻优。用提出的PSO-SVR模型与K-CV和遗传算法(GA)优化的SVR模型以及BP网络预测模型对比,实验结果表明,该模型具有较高的预测精度和泛化能力,适用于车辆排队长度的预测。According to the characteristics of city road vehicle queuing system under emergency, considering the affect factors from the view of space-time, it establishes Support Vector Regression(SVR)model to predict vehicle queue length.Considering the sensitivity of parameters effecting on model performance, Particle Swarm Optimization(PSO)algorithm is proposed to select SVR parameters. Furthermore, the k-fold cross validation(k-CV) mean square error averaged is used as the fitness of PSO. The proposed PSO-SVR model compares with k-CV SVR model, GA-SVR model and BP network. The test results show that PSO-SVR model has higher prediction accuracy and generalization ability, and the model is effective to predict vehicle queue length.

关 键 词:支持向量回归 粒子群算法 参数优化 车辆排队长度 预测 

分 类 号:TP274[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象