检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]四川大学计算机学院机器智能实验室,成都610065
出 处:《计算机研究与发展》2016年第1期68-79,共12页Journal of Computer Research and Development
基 金:国家自然科学基金项目(61322203;61332002;61432012)~~
摘 要:深度神经网络(deep neural networks,DNNs)及其学习算法,作为成功的大数据分析方法,已为学术界和工业界所熟知.与传统方法相比,深度学习方法以数据驱动、能自动地从数据中提取特征(知识),对于分析非结构化、模式不明多变、跨领域的大数据具有显著优势.目前,在大数据分析中使用的深度神经网络主要是前馈神经网络(feedforward neural networks,FNNs),这种网络擅长提取静态数据的相关关系,适用于基于分类的数据应用场景.但是受到自身结构本质的限制,它提取数据时序特征的能力有限.无限深度神经网络(infinite deep neural networks)是一种具有反馈连接的回复式神经网络(recurrent neural networks,RNNs),本质上是一个动力学系统,网络状态随时间演化是这种网络的本质属性,它耦合了"时间参数",更加适用于提取数据的时序特征,从而进行大数据的预测.将这种网络的反馈结构在时间维度展开,随着时间的运行,这种网络可以"无限深",故称之为无限深度神经网络.重点介绍这种网络的拓扑结构和若干学习算法及其在语音识别和图像理解领域的成功实例.Deep neural networks (DNNs) and their learning algorithms are well known in the academic community and industry as the most successful methods for big data analysis. Compared with traditional methods, deep learning methods use data-driven and can extract features (knowledge) automatically from data. Deep learning methods have significant advantages in analyzing unstructured, unknown and varied model and cross field big data. At present, the most widely used deep neural networks in big data analysis are feedforward neural networks (FNNs). They work well in extracting the correlation from static data and suiting for data application scenarios based on classification. But limited by its intrinsic structure, the ability of feedforward neural networks to extract time sequence features is weak. Infinite deep neural networks, i.e. recurrent neural networks (RNNs) are dynamical systems essentially. Their essential character is that the states of the networks change with time and couple the time parameter. Hence they are very suit for extracting time sequence features. It means that infinite deep neural networks can perform the prediction of big data. If extending recurrent structure of recurrent neural networks in the time dimension, the depth of networks can be infinite with time running, so they are called infinite deep neural networks. In thispaper, we focus on the topology and some learning algorithms of intinite deep neural networks, and introduce some successful applications in speech recognition and image understanding.
关 键 词:深度神经网络 无限深度神经网络 前馈神经网络 回复式神经网络 大数据
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222