检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李胜[1] 韩永亮[1] 高宏 罗明坤[1] 胡海永
机构地区:[1]辽宁工程技术大学矿业学院 [2]煤科集团沈阳研究院有限公司
出 处:《中国安全科学学报》2015年第11期16-21,共6页China Safety Science Journal
基 金:国家自然科学基金资助(51004063);辽宁省高等学校优秀人才支持计划(LJQ2011029)
摘 要:为准确预测边坡变形,有效预防边坡灾害发生,提出构建基于局域均值分解(LMD)和极限学习机(ELM)的边坡变形多尺度预测模型。用LMD方法,将边坡变形时间序列分解为多尺度且相对平稳的随机项、周期项和趋势项。针对各项时间序列,分别构建基于ELM的预测模型。经累加各分项预测值,获得模型最终预测结果。以甘肃某边坡变形为案例,进行实证分析。结果表明:LMD-ELM模型能够充分挖掘数据内部隐含的变形规律,有效诠释多尺度变形与其诱发因素间复杂的响应关系,预测精度、运行速度和拟合泛化能力较其他模型有所提高。In order to predict the deformation of slope accurately and prevent the occurrence of slope disasters effectively,a multi-scale model of slope deformation based on LMD and ELM was built. Through the LMD method,the slope deformation time series was decomposed into a random term,a periodic term and a trend term. For each time series,a prediction model was built respectively based on ELM. By accumulation of itemized predicted values,the final prediction results were obtained. A certain slope in Gansu Province was taken as an example for carrying out deformation prediction empirical analysis. The results show that the model based on LMD-ELM can reveal fully the internal rule of the deformation observation data,interpret the complex response relationships between the multi-scale deformation and its inducing factors effectively,and that the prediction accuracy,running speed and fitting generalization ability of this model are improved compared with other models.
关 键 词:边坡变形 局域均值分解(LMD) 时间序列 极限学习机(ELM) 多尺度 预测
分 类 号:P642.22[天文地球—工程地质学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222