检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:汤健[1] 柴天佑[2] 丛秋梅[3] 刘卓[2] 余文
机构地区:[1]92941部队,辽宁葫芦岛125001 [2]东北大学流程工业综合自动化国家重点实验室,辽宁沈阳110004 [3]辽宁石油化工大学信息与控制工程学院,辽宁抚顺113001 [4]墨西哥国立理工大学高级研究中心(CINVESTAV-IPN),墨西哥07360
出 处:《控制理论与应用》2015年第12期1582-1591,共10页Control Theory & Applications
基 金:中国博士后基金(2013M532118;2015T81082);国家自然科学基金(61573364;61273177;61503066);流程工业综合自动化国家重点实验室开放课题基金;国家“863”计划项目(2015AA043802);江苏省优势学科PAPD;江苏省大气环境与装备技术协同创新中心CICAEET资助~~
摘 要:针对目前采用经验模态分解(empirical model decomposition,EMD)得到的系列子信号构建的磨机负荷参数软测量模型泛化性能差、难以进行清晰物理解释,以及EMD算法存在的模态混叠等问题,本文提出了基于选择性融合多尺度筒体振动频谱的建模方法.首先采用EMD、集合EMD(ensemble EMD,EEMD)、希尔伯特振动分解(Hilbert vibration decomposition,HVD)共3种多组分信号自适应分解算法获得磨机筒体振动多尺度子信号的集合,接着通过相关性分析剔除虚假无关部分,然后再将与原始信号相关性强的那部分多尺度子信号变换至频域,进而更有利于构建这些多尺度频谱与磨机负荷参数间的映射模型,最后通过改进分支定界选择性集成(improved branch and bound based selective ensemble,IBBSEN)算法建立软测量模型,实现对多源多尺度筒体振动频谱的最优选择性信息融合.基于实验球磨机运行数据的仿真实验表明所提方法在模型可解释性和泛化性能上均优于之前研究所提出方法.Soft sensor models of mill load parameters based on a set of sub-signals obtained by empirical model decomposition (EMD) have many shortcomings, such as low modeling accuracy and difficult interpretation. Moreover, EMD cannot get rid of the mode mixing problem. Thus, we propose a new soft sensor approach based on selective fusion of multi-scale shell vibration frequency spectra. At first, three multi-component signal decomposition algorithms, such as EMD, ensemble EMD (EEMD) and Hilbert vibration decomposition (HVD), are used to obtain a set of shell vibration sub-signals with different scales. Then, the correlation analysis between these sub-signals and the original signal is made, and the false decomposed part is excluded. Those sub-signals that have strong correlation with the original signal are transformed into frequency domain, which is helpful to construct the mapping model between these multi-scale frequency spectrum and mill load parameters. Finally, a new improved branch-and-bound-based selective ensemble (IBBSEN) algorithm is used to construct soft sensor models. Thus, the optimized selective information fusion of the multi-source multi- scale shell vibration frequency spectra is realized. Simulation results based on operating data from a laboratory-scale ball mill shows that the proposed method outperforms the existing soft sensor approaches.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.17.79.195