检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张海芳
机构地区:[1]滇西科技师范学院数理系,云南临沧677000
出 处:《文山学院学报》2015年第6期63-65,68,共4页Journal of Wenshan University
基 金:云南省教育厅科研基金项目"不确定复杂动态网络的自适应控制"(2012Z150C)
摘 要:教科书中,凹凸函数的定义大都从几何意义引出,一般描述为:凸(凹)曲线弧段上任意两点联结而成的弦,总位于曲线弧段的下(上)方;或者,当曲线各点处存在切线时,凸(凹)曲线弧全部位于曲线上各点处切线的下(上)方。前者往往作为定义使用,后者却没有讨论。然而后者是凸(凹)函数的充分必要条件,也可以作为定义使用。所以由后者可引出一个新的定义,并且这些定义是等价的,从而进一步加深和拓宽了对连续函数凹凸性的认识和理解。In the textbook the definition of convex/concave function is mostly from the geometric meaning. Generally can be described as the chord of any two points on the convex/concave curve located in the lower/upper side of the curve or when there is a tangent at each point of the curve, all the convex/concave curve is located at the bottom/top of the tangent of the points on the curve. The former is often used as a definition, but the latter is not discussed. However, the latter is the necessary and sufficient condition of convex/concave function, which can also be used as a definition. So the latter can lead to new definitions and these definitions are equivalent, which further extend the cognition and understanding of convexity/concavity of continuous functions.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33