检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西安建筑科技大学土木工程学院,西安710055
出 处:《计算力学学报》2015年第6期733-738,共6页Chinese Journal of Computational Mechanics
基 金:国家自然科学基金(51078306);高等学校博士学科点专项科研基金(20106120110004);西安建筑科技大学重大科技项目创新基金(ZX0901);陕西省重点学科建设专项资金(E01004)资助项目
摘 要:相邻结构的碰撞时程分析是计算地震碰撞力反应谱的基础。结构碰撞时程分析要求采用稳定性好、精度高及计算效率高的数值分析方法。精细积分法将二阶动力微分方程通过增元降阶的方式转换成Hamilton对偶变量体系,得到了动力微分方程的精确解。基于此,本文将精细积分法引入结构碰撞时程分析及地震碰撞力反应谱计算中。在推导精细积分法公式的基础上,在MATLAB环境下编制了结构碰撞时程分析程序和碰撞力反应谱计算程序,并实现了碰撞力反应谱程序的并行化。经算例验证,精细积分法应用于结构碰撞时程分析及地震碰撞力反应谱计算是可行的,程序计算结果准确。The computation of earthquake pounding force response spectrum is base on the pounding time history analysis of two adjacent structures. The analysis requires an application of numerical analysis with good stability,high precision and efficiency. The precise integration method, which is a method to convert the two order dynamic equation into Hamiltonian dual variables system by means of element addition and order reduction, provides an accurate solution for the time history problem. Based on this point,the paper introduced the precise integration method to simulate the pounding process of adjacent structures and compute the earthquake pounding force response spectrum. The PIM formulas correspond to structure pounding problems were derived, the structure pounding analysis program and earthquake pounding force response spectra program were coded in environment of Matlab. And furthermore, the parallelization of the pounding force response spectra program was implemented. An example was applied to verify the program. The results indicate that the method adopted by this paper can be effectively applied to simulate structure pounding process as well as compute the earthquake pounding force response spectrum with a high accuracy solution.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3