检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张丽[1]
机构地区:[1]中国科学技术大学数学学院,安徽合肥230026
出 处:《郑州大学学报(理学版)》2015年第4期1-5,共5页Journal of Zhengzhou University:Natural Science Edition
基 金:国家自然科学基金资助项目;编号11371335
摘 要:群G的正规子群N称为πFΦ-超中心的(πFΦ-hypercentral),如果N=1或者N≠1且N的每个阶数可被π中某些素数整除的非-Frattini G-主因子是F-中心的.群G的所有πFΦ-超中心子群的积称为G的πFΦ-超中心,并记为ZπFΦ(G).应用πFΦ-超中心定义了πFΦ-可补(πFΦ-supplemented)子群:群G的子群H称为πFΦ-可补的,如果存在G的子群T,使得G=HT且(H∩T)HG/HG≤ZπFΦ(G/HG),其中HG是G的包含在H中的最大的正规子群.研究了πFΦ-超中心的一些性质,并利用πFΦ-可补的概念给出了p-幂零和超可解的几个判断准则.A normal subgroup N of G is called πFΦ-hypercentral in G if N = 1 or N≠1 and every nonFrattini G-chief factor below N with order divided by at least one prime in π,is F-central. The product of all the normal subgroups which are πFΦ-hypercentral in G,is called the πFΦ-hypercentre of G and denoted by Z( G). Using the πFΦ-hypercentre of G,the πFΦ-supplemented subgroup was defined: a subgroup H of G was called πFΦ-supplemented in G if there existed a subgroup T of G such that G = HT and( H∩T) HG/ HG≤ZπFΦ( G /HG),where HGwas the largest normal subgroup of G contained in H. The propertie of πFΦ-hypercentre were studied. And obtain some new criterion for p-nilpotency and supersolvability of finite groups were obtained.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145