检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赵振杰[1,2] 方勇纯[1,2] 张雪波[1,2]
机构地区:[1]南开大学机器人与信息自动化研究所,天津300071 [2]天津市智能机器人技术重点实验室,天津300071
出 处:《机器人》2016年第1期17-26,共10页Robot
基 金:国家科技支撑计划(2013BAF07B03);国家自然科学基金(61203333);教育部高等学校博士学科点专项科研基金(20120031120040);天津市应用基础与前沿技术研究计划(13JCQNJC03200)
摘 要:提出一种基于筛选机制的快速概率占据图目标定位算法(SPOM),在多视角监控环境下,该方法能够快速准确地计算出进入场景中运动物体的位置.具体而言,首先设计了一种高效的筛选机制,可以根据运动检测的结果,粗略估计出运动目标在3维空间中的位置;然后建立合适的似然模型,利用贝叶斯方法计算出目标出现在备选区域内各个位置上的概率,从而找到目标物体;最后,通过阈值化概率图的方法得到目标的位置信息,并采用粒子滤波器对定位结果进行校正,以进一步提高定位的准确度.相较于通常的概率占据图算法,该算法通过引入筛选机制来筛除目标不可能出现的位置,可大幅减小概率占据图的计算量,提高了运行速度,并且能够更准确地计算出目标物体的位置.基于自行搭建的实验平台,对这种基于筛选机制的定位算法和通常的概率占据图算法进行了对比实验,实验结果验证了本文算法能够更加快速准确地估计出动态目标的位置.A sifting mechanism based object localization algorithm for fast probabilistic occupancy map(sifted probabilistic occupancy map, SPOM) is proposed to calculate the positions of moving objects fast and accurately in typical multi-view surveillance scenarios. Specifically, an efficient sifting mechanism is designed firstly to roughly estimate the 3D positions of the moving objects according to the output of motion detection. Secondly, a proper likelihood model is set up by Bayesian method to calculate the occupancy probability of the objects for each position within the sifted region. Finally, object positions are obtained according to a pre-set threshold of probabilistic occupancy map, and particle filter is utilized to adjust the results to improve the localization accuracy. Compared with the conventional probabilistic occupancy map(POM), the proposed method can decrease the computational overload dramatically by discarding the impossible object positions through the sifting process, therefore the running speed is improved, and it simultaneously provides more accurate estimations for object positions. Based on the self-built experimental platform, comparative experiments of SPOM and POM are conducted,and the obtained results demonstrate that the proposed method can locate the moving objects more quickly and accurately.
关 键 词:智能视频监控 多视角目标定位 贝叶斯方法 产生式模型
分 类 号:TP242[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.94