检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《信息技术》2016年第2期131-135,共5页Information Technology
摘 要:目前对于消费者价格指数(CPI)的预测研究基本集中于点预测。为预测本期较上期的CPI数据波动区间,提出一种基于小波神经网络和ARMA组合模型预测的方法。该模型首先利用小波神经网络对CPI数据进行拟合测试,对测试序列实际输出和期望输出的残差序列{et}进行ARMA建模预测,然后基于方差最小原则得到预测残差序列{e!t}95%的置信区间。通过实验表明预测残差序列95%置信区间可以很好的反应未来CPI数据的波动情况,具有较高的参考价值。So far,a lot of research is focused on the prediction of the consumer price index( CPI). This paper presents a combination model based on wavelet neural network and ARMA model for forecasting the range of CPI volatility. Firstly,the model is used to fit the CPI sequence test and the test sequence of the actual output and desired output residual sequence of ARMA model building simulation. Then based on the principle of minimum variance the residual error sequence prediction interval is 95%. The experiment result shows that confidence interval can forecast CPI data volatility under fixed variance 95%confidence interval,which has high reference value.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3