检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《数学理论与应用》2015年第4期74-79,共6页Mathematical Theory and Applications
摘 要:同余式组求解是数论中最基本的问题之一,在公钥系统与通信编码等领域具有许多重要的应用.本文通过将求衍数的过程转化为求解一个二元一次不定方程整数特解,提出了求解此类问题的新算法.理论上证明了:对给定的k个一次同余式,经典的孙子算法同本文的改进算法的复杂度之比为klog_(kM)M(若M_i为同余式组中除去第i个同余式,其余k-1个同余式的模的乘积,M是M_i的平均值).数值实验结果表明了新算法所需时间接近于经典孙子定理所需时间的0.5倍,验证了该改进算法的高效性.Solving the system of congruence is a fundamental problem in number theory which applies common- ly in the field of public key system and communication coding etc. In this paper, we transform the preeess of seeking the derivative numbers into searching the particular integer solutions of an indeterminate binary linear function and come up with a new algorithm to solve this class of problems. Theoretically, given a certain group of k linear congruence expressions, we prove the complexity ratio of classical Sunzi algorithm to our new algo- rithm is k logkmM( Mi is the product of all modules of congruence expressions except for the ith one, M is the mean value of Mi ). The numerical experiment demonstrates that our modified algorithm consumes just roughly half of the time the classical Sunzi algorithm does and therefore indicates the high effcieney this algorithm en- dows.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38