检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]汽车车身先进设计制造国家重点实验室,湖南大学长沙410082
出 处:《电子测量与仪器学报》2016年第1期58-65,共8页Journal of Electronic Measurement and Instrumentation
基 金:国家自然科学基金(51175159);国家自然科学基金(51575169);中华人民共和国人力资源和社会保障部留学人员科技活动项目资助
摘 要:为了提高驾驶员换道意图的辨识率,提出了一种基于隐马尔可夫模型(HMM)和支持向量机(SVM)的混合模型。通过驾驶员在环仿真实验平台采集1.2 s时间窗内的驾驶员方向盘转角、油门踏板操作信息,匹配时序性良好的各个HMM模型(紧急左换道、正常左换道、紧急右换道、正常右换道和车道保持五种HMM模型)。然后结合各个HMM模型输出的最大似然估计值,由SVM进行分类,从而辨识出驾驶员当前的换道意图。仿真结果表明:相比单独的HMM或SVM,该混合模型能够更准确地辨识驾驶员的换道意图,辨识率高达98%,且耗时仅需0.006 s,具有较好的实时性。A hybrid model based on hidden Markov model (HMM) and support vector machine (SVM) is proposed to improve the recognition rate of the driver' s lane change intention. The driver' s steering wheel angle and accel- erator pedal data in 1.2 second time window are collected by the Driver-in-Loop (DiL) simulation experiments, these data could be matched with five HMM models (emergency left lane change, normal left lane change, emer- gency right lane change, normal right lane change and lane keep these five HMM models), which possess an out- standing characteristic of time sequence. SVM can classify the maximum likelihood estimation which is outputted by HMM models. Finally, it can recognize the driver' s lane change intention. The simulation results show that this proposed hybrid model can recognize the driver' s lane change intention more accurately when compared with the classified approach only with the HMM or SVM, the recognition rate is reached as high as 98% , and takes only 0. 006 second, which shows that it has an excellent performance in real time.
关 键 词:驾驶员换道意图 混合模型 隐马尔可夫模型 支持向量机
分 类 号:TN709[电子电信—电路与系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28