检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]江南大学物联网工程学院,江苏无锡214122
出 处:《计算机与应用化学》2016年第2期237-240,共4页Computers and Applied Chemistry
基 金:国家自然科学基金资助项目(61203111;61304138)
摘 要:针对一类双率采样的CARMA模型,研究了相关的自校正控制问题。基于双率采样以及含有噪声的数据,本文提出一个辅助模型来估计无法采样到的损失输出数据,并进一步采用随机梯度算法来估计模型参数。通过最小化最优预测输出的方差并结合Diophantine方程给出了基于辅助模型的广义最小方差自校正控制(AM-GMVSTC)策略。最后通过一个仿真例子说明提出算法的有效性。This paper considers the problem of self-tuning control for a class of dual-rate sampled CARMA model. Based on the dual-rate sampled and noise-contaminated data, an auxiliary model is presented to estimate the missing output data, and further a stochastic gradient algorithm is introduced to estimate the parameters of model. By using a Diophantine equation and minimizing the variance of the optimal prediction errors, the auxiliary model based generalized minimum self-tuning control (AM-GMVSTC) strategy can be derived. A numerical simulation example illustrates the effectiveness of the presented algorithm.
分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.148.196.9