检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴化璋[1]
出 处:《安徽大学学报(自然科学版)》2015年第6期1-8,共8页Journal of Anhui University(Natural Science Edition)
基 金:Supported by the Natural Science Foundation of Anhui Province(1208085MA02)
摘 要:通过双线性变换函数构造多项式空间C_(n+1)[z]的两个基{α_i^(n)(z)=(1±z)n-i(1■z)~i,0≤i≤n},对在该基下的结式矩阵和广义Bezout矩阵进行研究.根据结式矩阵可计算两个多项式的最大公因式.给出n阶广义Bezout矩阵元素的两个快速计算公式,计算的工作为o(n^2).最后,对这两类矩阵之间的相互联系进行了讨论.The bases {α_i^(n)(z)=(1±z)n-i(1干z)~i,0≤i≤n} of linear polynomial space Cn+l [z] were constructed from a bilinear transformation function. The resultant matrices and generalized Bezoutians for polynomials under such bases were investigated. The greatest common divisor of two polynomials were computed in terms of the resultant matrices. Two fast algorithm formulas for the elements of generalized Bezoutians of order n were given, and the costs of the algorithms were o(nZ). Connections between these two classes of matrices were were also discussed.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49