检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]昆明理工大学管理与经济学院,昆明650093
出 处:《资源科学》2016年第3期450-460,共11页Resources Science
基 金:国家自然科学基金项目(71562023)
摘 要:随着中国经济的快速发展,物流业需求快速增长、规模不断扩大,也带来了能源消耗的增长。研究中国物流业能源消费水平以及能源需求,有利于物流业节能工作的开展、缓解能源压力。本文选取了影响物流业能源需求的11个主要因素,基于径向基神经网络对2001-2012年间中国物流业能源需求相关数据进行模拟与仿真,在此基础上对2016年和2020年物流业能源需求量进行了预测,并分析了11个影响因素的重要性和测算了物流业的能源效率。研究结果表明:12001-2012年间中国物流业能源消耗总量在不断增加,随着物流业的进一步发展,到2020年物流业能源消费总量将达到51261.92万t标准煤;2在解决物流业能源需求预测问题时,RBF神经网络比GM(1,1)预测模型、BP神经网络方法有更高的预测精度;3通过RBF神经网络变量重要性分析发现固定资产投资对物流业能源消费量的影响程度最大;4目前物流业能源效率明显低于全国能源效率,为节约能源、提高能源利用效率,物流业需要转变能源利用方式和发展模式。As economy of China grows rapidly,the logistics sector,by the tremendous needs of the market,is developing quickly and the scale and energy consumption are exploding. Studying energy consumption and demand in the logistics sector is significant in the implementation of energy conservation and ease energy pressure. We screened 11 main factors affecting energy demand in the logistics sector,and then established a model of prediction and simulation of energy demand from 2001 to 2012 on the basis of the radial basis function(RBF)neural network whereby energy demand in the logistics sector from 2016 and 2020 is predicted. We propose some recommendations to improve energy consumption efficiency based on the independent variable important analysis and measure energy efficiency in the logistics sector. We found that total energy consumption of the logistics sector increased continuously from 2001 to 2012. With further development of China's logistics sector,energy demand will keep increasing for years to come and energy consumption will arrive at 51 261.92 million tons in 2020. Compared with a GM(1,1)model and back propagation(BP)neural network,the RBF neural network is better than both in terms of forecast accuracy for the logistics sector. The variable of investment in fixed assets has a deeper impact on energy consumption in the logistics sector than other variables. The energy intensity of the logistics sector is significantly higher than China's GDP,to save energy and improve energy consumption efficiency the logistics sector needs to change energy utilization and development modes.
关 键 词:物流业 能源需求预测 能源消费 能源效率 径向基神经网络
分 类 号:F259.2[经济管理—国民经济] TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.190.219.46