检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京交通大学轨道交通控制与安全国家重点实验室,北京100044 [2]北京交通大学轨道交通运行控制系统国家工程研究中心,北京100044
出 处:《铁道学报》2016年第3期92-97,共6页Journal of the China Railway Society
基 金:轨道交通控制与安全国家重点实验室2014年自主研究课题(RCS2014ZT06)
摘 要:高速铁路列车运行控制系统车载设备通过人机界面(DMI)图像显示和按键点击等方式和司机进行交互。通过DMI信息自动识别实时获取列控车载设备工作模式,对实现车载设备状态监控、自动测试等,均具有重要意义。本文基于支持向量机(SVM)和粒子群算法(PSO)等方法,对在DMI上显示的列控车载工作模式的分类识别进行研究。在对DMI图像进行预处理得到包含车载工作模式的图像区域后,首先对图像采用2DPCA方法进行降维并提取特征,然后采用支持向量机(SVM)进行训练和学习,其中SVM参数的优化采用改进的粒子群算法(PSO)。仿真实验表明,经过训练后的分类器可快速准确识别DMI显示的车载工作模式,平均识别率达到98.3%。该方法对DMI其它显示信息的识别具有参考意义。The on-board equipment of Chinese Train Control System (CTCS) interacts with drivers through the image display and the buttons of the Driver-Machine Interface(DMI). Through the automatic recognition of DMI information, real-time acquisition of the working modes of the on-board equipment of CTCS is significant to accomplish the monitoring and automatic test of the status of the on-board equipment. Based on the SVM (Support Vector Machine) and PSO (Particle Swarm Optimization) algorithms, in this paper, a study was con- ducted on the classification and recognition of the working modes of the on-board equipment displayed on the DMI. Firstly the 2DPCA (2 Dimension Principal Component Analysis) was used to extract the feature of the images and reduce the dimension of the feature after the pretreatment of the DMI images. Then the SVM (Sup- port Vector Machine) was applied to build the classifier and the parameters of the SVM were optimized using improved PSO (Particle Swarm Optimization). The simulation results showed that the classifier trained by sample data can recognize automatically and accurately the Chinese character, or the working modes of the CTCS system, with the average recognition rate of 98.3%. The method discussed in this paper can be used for the recognition of the other information displayed on the DMI of CTCS system.
关 键 词:列控系统 CTCS 图像识别 支持向量机 改进的粒子群算法
分 类 号:U238[交通运输工程—道路与铁道工程] TP391.43[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249