检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]长安大学公路学院特殊地区公路工程教育部重点实验室,西安710064 [2]西北工业大学工程力学系,西安710072
出 处:《应用数学和力学》2016年第3期235-244,共10页Applied Mathematics and Mechanics
基 金:国家自然科学基金(11372252;11502202)~~
摘 要:材料特征尺寸与其内禀尺寸相当时,材料表现出明显的尺寸效应.基于简化的应变梯度理论,通过半逆法,本文给出多层简化应变梯度Timoshenko梁的变分原理,通过最小总势能原理导出系统的边界条件并对其低阶和高阶边界条件进行讨论,随后给出简支梁系统屈曲载荷和振动频率的Rayleigh(瑞利)解.通过双层梁系统的振动分析算例得到内禀尺寸、长径比等因素对梁系统振动频率的影响.该文构造的Rayleigh解有望对其他数值方法,如有限元法、传递矩阵法等,提供一定的参考和对比.The mechanical properties of member materials exhibit notable size effects when the characteristic sizes of the members are comparable to their instinct length parameters.A variational formulation of the nanosize multi-layer Timoshenko beam problem was developed via the semi-inverse method within the context of the simplified strain gradient theory.This method was fit for determining all the possible loworder and high-order boundary condtions directly from the governing equations of the system,according to the minimum total potential energy principle.In turn,the Rayleigh solutions of buckling load and free vibration frequencies of the simply supported beam system were given.The numerical simulations indicate the prominent effects of the instinct length parameters and aspect ratios on the free vibration frequencies of the double-layer beam systems.As a possible benchmark for the later numerical studies with the transfer matrix method or the finite element method,the present Rayleigh solutions of buckling load and free vibration frequencies of the multi-layer beam systems will make good sense.
分 类 号:TB383[一般工业技术—材料科学与工程] O342[理学—固体力学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.145.45.170