检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Zhu Song Xiaoli Zhang Shuo Jia Pamela C.Yelick Chengtian Zhao
机构地区:[1]Institute of Evolution & Marine Biodiversity, College of Marine Life Science, Ocean University of China [2]Department of Orthodontics, Division of Craniofacial and Molecular Genetics, Tufts University [3]Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology
出 处:《Journal of Genetics and Genomics》2016年第3期107-120,共14页遗传学报(英文版)
基 金:supported by the grants from the National Natural Science Foundation of China (Nos. 31372274 and 31422051);Shandong Provincial Natural Science Foundation, China (No. JQ201506) to C.Z.;supported by the grant from NIH/NIDCR (R01DE018043) to P.C.Y.
摘 要:Cilia, microtubule-based structures found on the surface of almost all vertebrate cells, play an array of diverse biological functions. Abnormal ciliary axonemal structure and function can result in a class of genetic disorders that are collectively termed ciliopathies. Model organisms, including Chlamydomonas reinhardtii and Caenorhabditis elegans have been widely used to study the complex genetic basis of ciliopathies. Here, we review the advantages of the zebrafish as a vertebrate model for human ciliopathies. We summarize the features of zebrafish cilia, and the major findings and contributions of the zebrafish model in recent studies of human ciliopathies. We also discuss the new genome editing approaches being efficiently used in zebrafish, and the exciting prospects of these approaches in modeling human ciliopathies.Cilia, microtubule-based structures found on the surface of almost all vertebrate cells, play an array of diverse biological functions. Abnormal ciliary axonemal structure and function can result in a class of genetic disorders that are collectively termed ciliopathies. Model organisms, including Chlamydomonas reinhardtii and Caenorhabditis elegans have been widely used to study the complex genetic basis of ciliopathies. Here, we review the advantages of the zebrafish as a vertebrate model for human ciliopathies. We summarize the features of zebrafish cilia, and the major findings and contributions of the zebrafish model in recent studies of human ciliopathies. We also discuss the new genome editing approaches being efficiently used in zebrafish, and the exciting prospects of these approaches in modeling human ciliopathies.
关 键 词:CILIA ZEBRAFISH CILIOPATHY Disease model
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145