检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:周泽弘 曹淋海[2] 王昌全[1] 李启权[1] 李冰[1] 李珊[1]
机构地区:[1]四川农业大学资源学院,成都611130 [2]四川省邛崃市国土资源局,四川邛崃611500
出 处:《中国烟草科学》2016年第2期65-70,共6页Chinese Tobacco Science
基 金:四川省烟草公司重点项目"基于3S技术的四川烟区生态环境要素时空特征提取及应用"(SCYC201402006);四川省烟草公司重点项目"四川植烟土壤质量监测评价及退化阻控技术研究"(201202005);川渝中烟工业有限责任公司重点项目"公司烟叶原料品质数据库建设与应用研究"(12097)
摘 要:为建立库存烟叶香型预测模型,采用RBF神经网络方法,对川渝中烟2009—2011年库存烟叶样品的香型特征进行了分析建模。结果表明,不同香型烟叶在化学成分含量上存在差异,清香型烟叶糖含量明显高于其他香型,氯含量远低于浓香型;采用主成分分析消除各化学指标共线问题,并建立基于RBF神经网络的库存烟叶香型预测模型,其准确率高达90%;灵敏度检验表明,清香型烟叶模型灵敏度为最优,中间香型灵敏度较低。证明利用RBF神经网络可以较好地对烟叶的常规化学成分进行烟叶香型预测。In order to establish the prediction model of inventory tobacco flavor, the authors analyze the samples of 2009-2011 inventory tobacco in China Tobacco Chuanyu Industrial Co., Ltd. by using the RBF neural network method. The results showed that there was difference of the content of chemical components between different tobacco flavors, sugar content in clean aroma type tobacco was significantly higher than the others, and chlorine content in clean aroma type tobacco was much lower than that of full-bodied type. The authors used principal component analysis to eliminate the chemical indicator collinear problem, and established prediction models based on RBF neural network of inventory tobacco flavor. The accuracy rate of the models was up to 90%. The sensitivity test showed that the clean aroma type tobacco model had the best sensitivity, the moderate type showed a lower sensitivity. Tobacco flavor can be predicted based on chemical components using the RBF neural network.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117