检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]东南大学交通学院 [2]华东交通大学土木建筑学院
出 处:《建筑科学与工程学报》2016年第2期56-62,共7页Journal of Architecture and Civil Engineering
基 金:国家自然科学基金项目(51268013;51468018);江西省教育厅科研项目(GJJ14384;GJJ14352);教育部工程研究中心建设项目(13TM02)
摘 要:根据模态综合叠加技术的优势,提出基于精细积分算法(PIM)的车桥耦合振动模型新算法。考虑积分步长内荷载协调分解,通过插值函数将移动车辆荷载等效到单元节点,利用科茨积分格式求解Duhamel非齐次项荷载。以移动常量力作用于简支梁桥为例,将解析解和多种迭代格式数值解进行对比,校验精细积分法结合科茨积分格式求解车桥耦合振动模型算法的准确性。以移动弹簧质量车模型作用于简支梁桥为例,分析积分步长、计算时间对Rung-Kutta法、Newmark-β法及PIM法计算结果的影响。结果表明:基于模态综合叠加法并结合精细积分格式求解车桥耦合振动问题不受积分步长限制,具有快速收敛的优势。According to the superiority of the modal superposition method, a new numerical algorithm based on precise integration method (PIM)was proposed to solve the problem of vehicle-bridge coupling vibration. The load decomposition coordination in an integration step was considered, and moving vehicle load was equivalent to element point through interpolating function, then Cotes integral format was introduced to solve Duhamel nonhomogeneous load. Taking a moving constant force on simply supported beam as an example, the veracity of Cotes integral format was verified through comparing the analytical solution with several numerical integral results. Taking a moving spring mass vehicle model on simply supported beam as an example, the effects of integral time step and computing time on computing results using Rung- Kutta method, Newmark-fi method and PIM were analyzed. The results show that the PIM lies in unlimited by integral step length, and has superiority of quick convergence in solving the problem of vehicle-bridge coupling vibration.
关 键 词:车桥耦合振动 移动弹簧质量 数值迭代格式 精细积分算法 模态综合叠加法
分 类 号:U443[建筑科学—桥梁与隧道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:13.59.236.184