检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西南财经大学经济信息工程学院,四川成都611130 [2]西北工业大学自动化学院,陕西西安710072 [3]宁夏大学数学计算机学院,宁夏银川750021
出 处:《光学精密工程》2016年第3期668-680,共13页Optics and Precision Engineering
基 金:国家自然科学基金重大项目(No.91218301);国家自然科学基金青年基金资助项目(No.61502396);西南财经大学中央高校基本科研业务费专项资金资助项目(No.JBK150503);西南财经大学中央高校基本科研业务费青年教师成长项目(No.JBK160135);2015年宁夏自然科学基金资助项目(No.NZ15054);互联网金融创新及监管四川省协同创新中心资助项目
摘 要:考虑现有图割算法没有充分考虑红外图像的模糊特性,分割精度和运行效率低的缺点,提出了基于快速递推模糊2-划分熵图割的红外图像分割算法以实现复杂背景下红外图像的自动高效分割。该方法利用图像感兴趣区域的最大模糊熵信息设计图割能量函数的似然能,基于局部最大模糊2-划分熵值迭代检测出包含图像最大信息的感兴趣区域来确保提取目标信息的完整性。为了提高最大模糊熵寻优的效率,引入时间复杂度为O(n2)的递推算法,将模糊熵计算转化为递推过程,并保存所有递推的熵函数值用于后续的穷举寻优。针对确定的感兴趣区域,利用该区域最大模糊2-划分时隶属度函数分布设置图割能量函数的似然能,从而充分考虑图像的模糊特性。对分割结果与几种常用的算法进行了视觉比较及运行时间,错分率,F指标的量化分析。结果表明:该算法分割精度F值高达95%,运行时间较其他常用算法至少缩短了72%,基本满足自动红外图像分割对精度、效率和鲁棒性的要求。Most of existing Graph Cut (GC) algorithms have not considered the fuzzy feature, poorer segmentation precision and lower operating efficiency of infrared images sufficiently. So this paper proposes an infrared image segmentation method based on the GC of fast recursive fuzzy 2-partition entropy to implement the automatic segmentation of an infrared image in complex backgrounds. The information of the maximum fuzzy entropy from a Region of Interest (ROI) was used to set the likelihood energy of the GC. The ROI containing the maximumimage information was detected by the iterative condition scheme based on the local fuzzy entropy values to ensure the completeness of the extracted target information. To improve the searching efficiency of the maximum fuzzy entropy, a recursive algorithm with time complexity O(n2) was presented to convert the computation of fuzzy entropy into a recursive process, and all the values of recursive entropy function were cached for the succeeding exhaustive optimization. For certain ROI, the likelihood energy of the GC energy function was set by the maximum fuzzy 2-partition membership functions of the ROI. By this way, the fuzzy feature of the infrared image can be considered sufficiently. The experimental analysis of the proposed algorithm on visual results, running time, misclassification error as well as F values were compared to those of several common algorithms. A plenty of experimental results indicate that the segmentation precision of proposed algorithm is up to 95% and the running time is 72% shorter than those of compared algorithms. It satisfies the requirements of automatic infrared image segmentation for higher precision, rapid speed, as well as stronger robustness.
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3