考虑随机量测时滞和同步相关噪声的改进高斯滤波算法  被引量:5

An improved Gaussian filter with randomly delayed measurements and synchronously correlated noises

在线阅读下载全文

作  者:于浛[1,2] 张秀杰[3] 陈建伟 宋申民[2] 李鹏[4] 

机构地区:[1]北京宇航系统工程研究所,北京100076 [2]哈尔滨工业大学控制理论与制导技术研究中心,黑龙江哈尔滨150001 [3]哈尔滨工业大学基础与交叉科学研究院,黑龙江哈尔滨150001 [4]湘潭大学信息工程学院,湖南湘潭411105

出  处:《控制理论与应用》2016年第2期133-145,共13页Control Theory & Applications

基  金:国家自然科学基金(61174037;61573115);国家重点基础研究发展计划(973计划)(2012CB821205);湖南省自然基金(2015JJ6105);湖南省教育厅优秀青年项目(14B167)资助~~

摘  要:经典高斯滤波算法存在量测信息实时获取,以及过程噪声和量测噪声相互独立的假设条件.然而,在工程实际应用中该假设条件有时难以满足.本文针对一类具有随机量测时滞和同步相关噪声的高斯系统的状态估计问题,设计了一种高斯滤波框架形式的最优估计算法,并给出了所设计算法的三阶球径容积法则的次优实现形式-考虑随机量测时滞和同步相关噪声的容积卡尔曼滤波器(CKF–RDSCN).其借助Bernoulli随机序列,来描述系统中可能存在的量测时滞现象,并利用高斯条件分布性质来解决噪声相关问题,在此基础上构建所提出的最优估计算法.仿真结果表明,相比于扩展卡尔曼滤波(EKF),无迹卡尔曼滤波(UKF)以及容积卡尔曼滤波(CKF),在含有随机量测时滞和噪声同步相关的状态估计问题中,CKF–RDSCN具有更高的精度和更好的数值稳定性.The classical Gaussian filters are based on the assumption that measurements are acquired in time and noises of process and measurement are independent of each other. However, this assumption is sometimes hard to satisfy in practical applications. In this paper, an optimal estimation algorithm in the form of Gaussian filter framework is designed to solve the problem of states estimation of a Gaussian system with randomly delayed measurements and synchronously correlated noises, and the rule of third-degree spherical-radial cubature is employed to deduced the suboptimal estimation implementation of the proposed algorithms which is named cubature Kalman filter with randomly delayed measurements and synchronously correlated noises(CKF–RDSCN). It takes random sequence of Bernoulli to describe the possible situation with respect to random delay in observation measurement and the property of Gaussian conditional distribution is utilized to solve the problem of noises correlation. Simulation results demonstrate that CKF–RDSCN is more accurate and stability than the extended Kalman filter(EKF), unscented Kalman filter(UKF) and CKF in the states estimation problem involved with randomly delayed measurements and synchronously correlated noises.

关 键 词:高斯滤波 容积卡尔曼滤波 随机时滞 同步相关噪声 

分 类 号:TN713[电子电信—电路与系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象