检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]第二炮兵工程大学,陕西西安710025 [2]广东省有色地质测绘院,广东广州510080 [3]第二炮兵驻石家庄地区军事代表室,河北石家庄050081
出 处:《无线电工程》2016年第4期47-51,共5页Radio Engineering
摘 要:针对高动态GPS数据处理中的非线性问题,提出了一种基于无迹卡尔曼滤波(UKF)的非线性GPS数据处理方法。传统的方法是将滤波中的非线性方程在标称轨道附近采样线性化,这样会产生较大的误差且计算较难实现。所提算法利用UKF处理GPS数据模型中的非线性方程,采用加权采样点的高斯最小集来表示状态分布,然后通过U变换产生的状态变量进行滤波估计。仿真实验表明,所提算法能够有效处理高动态GPS数据中的非线性问题,预测精度也有较大提高。In order to overcome the effects of nonlinearity in high dynamic GPS data processing,a nonlinear GPS data processing method based on Unscented Kalman Filter(UKF) is proposed. In traditional method, the nonlinear equation is linearized by sampling near the nominal trajectory ,which, however, may lead to relatively large error and high computation complexity.The proposed method u- ses the weighted sampling points to represent the state distribution when processing the nonlinear equation, then performs filtering esti- mation through the variants generated by U-transformation.Simulation experiment shows that the UKF is effective in solving the nonlin- earity issue of high dynamic GPS data,and it also improves the prediction accuracy.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249