检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机工程》2016年第4期221-225,234,共6页Computer Engineering
基 金:国家自然科学基金资助项目(61163047);江西省教育厅基金资助项目(GJJ14503)
摘 要:针对人脸识别问题,在原有的最小距离鉴别投影算法的基础上,根据核主成分分析(KPCA)方法,提出一种新的融合核主成分分析和最小距离的鉴别投影算法。运用KPCA对高维样本空间进行降维,通过核技巧将样本映射到高维非线性空间,继而在降维后的核子空间上通过鉴别投影方法计算其相应的投影矩阵,采用最近邻分类方法对样本进行分类并最终实现人脸识别。在ORL,FERET和YALE人脸库上的实验结果表明,该算法的识别率优于其他算法,可避免高维矩阵的计算复杂问题,同时定义的核子空间相似度权重也较好地保持了样本之间的近邻关系。By fusing Kernel Principal Component Analysis(KPCA) and Minimum Distance Projection (MDP), a new method based on the original minimum distance differential projection is developed to address the face recognition problem. Different from the classical minimum-distance discriminant projection algorithm,the new algorithm is based on dimensionality reduction algorithm. By using KPCA to reduce the dimension of these samples, they are mapped to a high- dimensional nonlinear space. The corresponding projection matrix is calculated in the dimension-reduced nuclear space by differential projection method. The nearest neighbor classification method is adopted to classify these samples and the face recognition is succeeded eventually. Experimental results on the ORL,FERET, and YALE face databases show that the proposed algorithm can outperform other algorithms. It can be avoided by using the nuclear technique to extract the nonlinear feature of the face image, and on the same time, the neighbor relationship of the samples is also kept by the defined similarity weight of the nuclear space.
关 键 词:主成分 核主成分 核子空间 鉴别投影 人脸识别 特征提取
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.138.191.28