检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:聂鹏[1] 吴文进[1] 李正强[1] 张大国[1]
机构地区:[1]沈阳航空航天大学机电工程学院,辽宁沈阳110136
出 处:《机床与液压》2016年第9期173-177,共5页Machine Tool & Hydraulics
基 金:辽宁省重点实验室项目(LS2010117)
摘 要:将BP神经网络和D-S证据理论相结合的方法运用于刀具磨损监测中,采用小波包分解法对刀具磨损过程中产生的声发射信号进行特征提取,构建特征向量,利用BP神经网络识别判断刀具磨损状态;通过BP神经网络的输出结果和训练误差计算D-S证据理论的基本概率赋值,并用D-S证据理论对BP神经网络的识别结果进行决策级融合。实验结果表明:该方法避免了神经网络识别时的误诊,提高了整个刀具磨损监测系统识别的准确性和可靠性。The method of BP neural network and D-S evidence theory combination was used in tool wear monitoring. The wavelet packet decomposition method was used to extract the acoustic emission signals from the tool wear process,feature vectors was constructed and tool wear state was determined using BP neural network. Basic probability assignment of D-S evidence theory was calculated through the output of BP neural network and training error,and level fusion was decided using recognition results of D-S evidence theory to BP neural network. Experimental results show that this method avoids misdiagnosis of neural network and improves recognition accuracy and reliability of the tool wear monitoring system.
分 类 号:TP206.3[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3