面向驾驶行为预警的换道意图辨识模型研究  被引量:12

Research on lane change intention identification model for driving behavior warning

在线阅读下载全文

作  者:毕胜强[1,2] 梅德纯[1,2] 刘志强[2] 汪澎[2] 

机构地区:[1]江苏省交通技师学院车辆工程系,江苏镇江212006 [2]江苏大学汽车与交通工程学院,江苏镇江212013

出  处:《中国安全科学学报》2016年第2期91-95,共5页China Safety Science Journal

基  金:江苏省交通运输科技项目(2014Y17)

摘  要:为更准确地对驾驶行为进行预警,进一步提高驾驶人换道意图的辨识准确率,借助驾驶模拟器采集数据,建立基于支持向量机(SVM)理论的换道意图辨识模型。对比分析不同人-车-路系统参数组合在换道意图和车道保持期间的差异性,选取最佳特征参数组合,运用网格和遗传算法-支持向量机(GA-SVM)寻优方法优化模型参数,并对优化模型进行验证。结果表明,以纵向加速度、方向盘转角、车辆偏离车道中心线的距离、驾驶人头部运动横坐标变化值作为表征换道意图的人-车-路系统特征参数,优化模型惩罚参数c为58.642 3、核函数参数g为222.732 6时,该模型对驾驶人换道意图的辨识准确率为90%,误警率为5%,基本实现准确辨识换道意图。With the aid of the driving data collected from a driving simulator,a SVM lane change intention identification model was built in order that accurate early warning on driving behavior can be made and then accuracy of the lane change intention identification can be improved. By comparing differences in characteristic parameters of a human-vehicle-road system while at lane changing and lane keeping,the optimized characteristic parameters were determined. The model parameters were optimized by using a grid optimization method combined with a genetic algorithm-SVM( GA-SVM) method,and then the optimization model was verified. In a human-vehicle-road system,the longitudinal acceleration,the rotating angle of steering wheel,the departure distance off the centerline and the horizontal value of the driver 's head were taken as characteristic parameters for the lane change intention identification. When the penalty parameter c is 58. 642 3 and the kernel function parameter g is 222. 732 6,the accuracy of lane change intention identification is 90%,while the rate of false alarm is 5%. In summary,the lane change intention can be accurately identified.

关 键 词:驾驶意图 先进驾驶辅助系统(ADAS) 人-车-路系统 支持向量机(SVM) 换道意图 

分 类 号:X924.4[环境科学与工程—安全科学] U491[交通运输工程—交通运输规划与管理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象