基于最小二乘估计融合的分布式电力系统动态状态估计  被引量:16

Distributed Dynamic State Estimation for Power Systems Based on Least Square Estimation Fusion

在线阅读下载全文

作  者:蔡永智[1] 陈皓勇[1] 万楚林 

机构地区:[1]华南理工大学电力学院,广东省广州市510640

出  处:《电力系统自动化》2016年第8期29-35,113,共8页Automation of Electric Power Systems

基  金:国家自然科学基金资助项目(51177049);国家优秀青年科学基金资助项目(51322702)~~

摘  要:随着电力系统规模不断扩大,分布式状态估计是解决集中式状态估计计算维数过高和量测大数据处理难等问题的可行策略之一。文中以容积卡尔曼滤波算法作为区域本地估计算法,在协调中心侧采用最小二乘估计融合技术协调估计区间边界状态。根据边界状态协调估计值,各区域通过带等式约束的卡尔曼滤波算法进一步修正区域内部状态的本地估计值。算例仿真表明,所提方法估计精度与集中式估计相当,相比集中式估计具有更好的实时性,且所需数据通信量少,易于实现。With the expanding scale of the power system, the distributed state estimation is one of the effective ways to overcome the difficulties of the centralized state estimation, such as too high calculation dimensions and large measurement data processing. This paper adopts the Cabuture Kalman filter to do the local estimation, and employs the least square estimation fusion to coordinate the estimates of the boundary bus states in the coordination center. According to the coordinated estimates of the boundary bus states, each subarea can further correct the local estimates of the internal bus states through the Kalman filter algorithm. Finally, the simulation results show that the estimated precision of the proposed method is close to the centralized method, and the proposed method has a better real-time property. Moreover, the proposed method only need less communication data, which is easy to be implemented.

关 键 词:互联电网 分布式状态估计 最小二乘估计融合 线性等式约束 容积卡尔曼滤波 

分 类 号:TM73[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象