检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《河南科学》2016年第4期601-605,共5页Henan Science
基 金:河南省科技厅重点科技项目(132102210493);郑州大学西亚斯国际学院校级重点科研项目(2015KYZD02)
摘 要:径流预报的信息有很大的相关性,这是必须在预报工作中避免的,同时,这些信息的维度较高,且以往处理这些信息的数学模型计算复杂度较高.针对以上问题提出了一种混合主成分分析方法(PCA,Principal Component Analysis)和改进BP(Improved Back Propagation)神经网络模型的中长期径流预报模型(PCA-IBP),此种方法可以很好地避免以上不足,可以进一步提高模型计算效率.实际数据验证表明,提出模型预报的精准程度以及效率都较传统的BP神经网络预报模型有所改善.The runoff forecast information has a very large correlation, which must be avoided in the forecast work. Meanwhile the dimension of the information and the computational complexity of the mathematical model of the information are higher in the past. In this paper, we proposed a mixture of principal PCA (principal component analysis) method and the improved BP (back propagation) neural network model into a medium and long-term runoff forecasting model (PCA-IBP) to solve the above problems. This new method can well avoid the shortcomings mentioned before, and can further improve the efficiency of the model calculation. The actual data shows that the accuracy and efficiency of the proposed model are improved compared with the traditional BP neural network forecasting model.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15