基于支持向量回归机的颗粒阻尼减振结构阻尼特性实验  被引量:2

Prediction of Particle Damping Ratio Based on GA-SVR

在线阅读下载全文

作  者:夏兆旺[1] 魏守贝 张帆[2] 王雪涛[1] 陈志超[1] 候星 

机构地区:[1]江苏科技大学能源与动力工程学院,北京100076 [2]中国运载火箭技术研究院研究发展中心,北京100076 [3]江苏科技大学船舶与海洋工程学院,江苏镇江212003

出  处:《实验室研究与探索》2016年第2期17-21,共5页Research and Exploration In Laboratory

基  金:国家自然科学基金项目(11302088);江苏省自然科学基金青年基金(BK2012278)资助项目

摘  要:将基于遗传算法(GA)的支持向量回归机(SVR)用于建立颗粒阻尼减振结构阻尼特性预测模型。应用基于结构风险最小化准则的SVR,建立颗粒阻尼减振结构阻尼特性—影响因素SVR预测模型,对颗粒阻尼减振结构的阻尼特性进行预测,并通过实验进行了验证。结果表明:在选择适当的参数和核函数的基础上,利用该方法建立的预测模型,平均相对误差在10.3%左右;颗粒阻尼器的减振性能随填充率的增加而增加,颗粒填充率75%时,减振性能最好;颗粒密度是影响颗粒阻尼器减振效果的重要因素,颗粒密度越大系统的减振性能越好;颗粒阻尼器的减振性能随着颗粒直径的变化不明显。In order to research the effective prediction method of particle damping ratio,genetic algorithm-support vector regression machine( GA-SVR) is used to establish model to predict particle damping ratio. On the basis of GA,we optimize the SVR parameters,apply the support vector regression machine which is based on structural risk minimization criterion to establish the "particle damping ratio-influence factors of the SVR forecasting model ",and then predict particle damping ratio. Experiment analysis shows that on the basis of selecting the appropriate parameters and kernel function,the particle damping ratio prediction model is established and works well. Based on this method,the average relative error is about 10. 3%.

关 键 词:阻尼比 遗传算法 支持向量回归机 

分 类 号:O328[理学—一般力学与力学基础] TB34[理学—力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象