广义Broer-Kaup-Kupershmidt孤子方程的拟周期解  被引量:5

Quasi-Periodic Solution of the Generalized Broer-Kaup-Kupershmidt Soliton Equation

在线阅读下载全文

作  者:魏含玉[1] 夏铁成[2] 

机构地区:[1]周口师范学院数学与统计学院,河南周口466001 [2]上海大学数学系,上海200444

出  处:《数学物理学报(A辑)》2016年第2期317-327,共11页Acta Mathematica Scientia

基  金:国家自然科学基金(11271008;61072147;11547175;11447220);上海大学一流学科;河南省自然科学基金(152300410230);河南省高等学校重点科研项目(16A110026);周口师范学院博士科研基金项目(ZKNU2014130)资助~~

摘  要:该文从新谱问题出发,得到一个新的(2+1)-维广义Broer-Kaup-Kupershmidt孤子方程在Lax对非线性化下被分解成可积的常微分方程.接着,给出了一个有限维Hamilton系统并且证明在Liouville意义下是完全可积的.通过引进Abel-Jacobi坐标把Hamilton流进行了拉直,借助Riemannθ函数得到了(2+1)-维Broer-Kaup-Kupershmidt孤子方程的拟周期解.In this paper,starting from a new spectral problem,a new(2 + 1)-dimensional generalized Broer-Kaup-Kupershmidt soliton equation is decomposed into systems of integrable ordinary differential equations resorting to the nonlinearization of Lax pairs.Then,a finitedimensional Hamiltonian system is obtained and is proved to be completely integrable in Liouville sense.The Abel-Jacobi coordinates are constructed to straighten out the Hamiltonian flows,from which the quasi-periodic solution of the(2 + 1)-dimensional generalized Broer-KaupKupershmidt soliton equation is obtained in terms of Riemann theta functions.

关 键 词:非线性化 Abel-Jacobi坐标 Riemann Θ函数 拟周期解 

分 类 号:O175.29[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象