检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中央财经大学金融学院,北京100028 [2]英大基金管理有限公司,北京100020
出 处:《经济与管理》2016年第3期57-63,共7页Economy and Management
基 金:国家社科基金项目(12CJY037)
摘 要:以我国创业板指数为研究对象,在正态分布、t分布和GED分布假设下比较分析不同类型的GARCH模型,预测不同置信水平下收益率序列的Va R值,并对结果进行比较和检验,得出如下结论:尽管EGARCH和PARCH模型预测的Va R值比GARCH和TGARCH模型更加精确,但模型种类的选择并非Va R值度量的关键,而分布假设与显著性水平则是影响Va R值精确度的关键因素。在正态分布下,当置信水平较低时,估计的Va R值能较好地刻画收益序列的尾部特征,但当显著性水平很高(如99%)时,估计的Va R值存在低估风险的现象;在t-分布下估计的Va R值存在高估风险的现象;在GED分布下,无论显著性水平的高低,GARCH类模型均能很好地刻画收益序列的尾部特征。As the research object,this article takes our country the GEM index in normal distribution,t-distribution and GED distribution assumption that comparative analysis of the different types of GARCH model,predict the Va R of yield sequence under different confidence level,and carries on the comparison to the results and inspection,the following conclusion:although PARCH and EGARCH model to predict the Va R than GARCH and TGARCH model is more accurate,but not Va R measurement model selection of the key factors,the key factors influencing the Va R measurement is distribution hypothesis and the level of significance. Under the normal distribution,when the confidence level is low,can well depict earnings estimates of Va R of the end of the sequence characteristics,but when significance level is very high(99%),estimates of Va R has the phenomenon of underpriced risk;Under the distribution of t-estimates of Va R value overestimate risk phenomenon;Under the GED distribution,regardless of the significance level of high and low,GARCH kind of model can well describe benefits of the end of the sequence features.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.62