检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]黑龙江财经学院,哈尔滨150025 [2]燕京理工学院
出 处:《黑龙江八一农垦大学学报》2016年第2期105-110,114,共7页journal of heilongjiang bayi agricultural university
摘 要:在众多的模式识别工具中,支持向量机(Support Vector Machine,SVM)是一种非常有效的解决工具。提出了基于SVM模型提升金融机构对个人信用评估效率的方法。通过对某银行的用户信用数据进行的研究,设计具体评估流程,利用SVM的SMO算法处理参数优化来构建模型,特点是分类精度高、误判率低,具有较好的稳健性,以此来控制消费信贷风险具有良好的适用性。处理商业银行划分信贷等级,应用此种模式可以解决信贷申请和政策实现,具有一定的实际意义。Among many pattern recognition tools,Support Vector Machine(Support Vector Machine,SVM)is a very effective one. A model based on SVM was proposed to promote efficiency of financial institution of personal credit evaluation method. Through researching user credit data of a bank,designing the specific evaluation process,using the SVM SMO algorithm to build the model of processing parameter optimization,it was characterized by high classification precision and low misjudgment rate,so it was stable and could control the consumption credit risk. Dealing with commercial bank credit rating,application of this model would solve the credit application and policy implementation,which had a certain practical significance.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.22