基于模糊熵改进的直方图匹配算法研究  被引量:9

Improved Histogram Matching Algorithm Based on Fuzzy Entropy

在线阅读下载全文

作  者:张龙涛[1] 孙玉秋[1] 

机构地区:[1]长江大学信息与数学学院,湖北荆州434023

出  处:《西南大学学报(自然科学版)》2016年第4期124-129,共6页Journal of Southwest University(Natural Science Edition)

基  金:国家自然科学基金项目(60572048;61503047);湖北省自然科学基金重点项目(2013CFA053)

摘  要:以模糊数学为基础,提出了一种基于最大模糊熵改进的直方图匹配图像增强算法,以弥补传统空间域图像增强方法在提高图像对比度时对噪声敏感的缺陷.首先,把灰度图像从空间域映射到模糊域,并以最大模糊熵为基础,将目标图像分为若干个灰度层;然后,针对不同灰度层的特征,用直方图匹配方法为每个灰度层设计相应的匹配函数;最后,用这些匹配函数增强相应的灰度层得到增强后的图像.通过与直方图匹配、直方图均衡化和局部直方图处理算法对比,证明本文算法具有更好的增强效果.本文算法结合模糊熵和直方图匹配算法,可以降低噪声在图像增强中的影响,而且在应用中具有良好的效果.An improved histogram matching algorithm based on maximum fuzzy entropy is proposed to make up the noise sensitive faultiness of traditional spatial domain methods improving image contrast. Firstly, the gray image is mapped from the spatial domain to the fuzzy domain, and divided into a plurality of gray levels based on maximum fuzzy entropy. Secondly, matching functions that combine characteristics of corresponding gray levels are designed by the histogram matching method. Finally, the functions are used to process corresponding gray levels, and the enhanced image is obtained. By comparison with histo- gram matching, histogram equalization and local histogram processing, the proposed method is shown to have higher enhancement effect. The proposed method that combines maximum fuzzy entropy with histo- gram matching algorithm can reduce the influence of noise in image enhancement and has good effect in ap- plication.

关 键 词:对比度 直方图匹配 模糊数学 模糊熵 图像增强 

分 类 号:TP751.1[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象