基于用户的协同过滤推荐算法研究及应用  

在线阅读下载全文

作  者:楚扬杰[1] 李珊[1] 

机构地区:[1]武汉理工大学,湖北省武汉市430000

出  处:《电子技术与软件工程》2016年第9期177-177,共1页ELECTRONIC TECHNOLOGY & SOFTWARE ENGINEERING

摘  要:随着互联网技术飞速发展,信息过载问题日益严重,对个性化推荐系统的研究已成必然趋势。为了提高传统协同过滤算法的准确性,本文提出基于人口统计与惩罚函数的协同过滤算法,先引入惩罚函数缓解传统推荐算法的数据稀疏性问题,再引入人口统计信息来进一步减少数据稀疏性问题对预测结果带来的影响,从而提高预测的准确性。实验验证表明,提出的改进算法能有效提高协同过滤算法预测的准确率。

关 键 词:推荐系统 协同过滤算法 人口统计惩罚函数 

分 类 号:TP391.3[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象