检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《四川师范大学学报(自然科学版)》2016年第1期47-50,共4页Journal of Sichuan Normal University(Natural Science)
基 金:国家自然科学基金(11101197);甘肃省自然科学基金(145RJZA079)
摘 要:首先给出右GFPI-封闭环的定义,即称环R是右GFPI-封闭环,如果所有的Gorenstein FP-内射右R-模类关于扩张封闭.证明当R是右凝聚与右GFPI-封闭环时,所有的Gorenstein FP-内射右R-模类是内射可解类.特别地,研究优越扩张环上模的Gorenstein FP-内射性质,证明当R与S是右凝聚环,S是R的优越扩张时,如果M是Gorenstein FP-内射右R-模,则HomR(S,M)是Gorenstein FP-内射右S-模,并且证明如果M是Gorenstein FP-内射右S-模,则M是Gorenstein FP-内射右R-模.另外,当R是右凝聚与右GFPI-封闭环时,给出Gorenstein FP-内射维数的若干等价刻画.A ring R is called right GFPI-closed,if the class of all Gorenstein FP-injective R-modules is closed under extensions.When R is right coherent and right GFPI-closed,it is proved that the class of all Gorenstein FP-injective right R-modules is injectively resolving. Especially,Gorenstein FP-injective properties of modules under extensions rings are investigated. When R and S are right coherent rings and S an excellent extension of R,it is proved that if M is a Gorenstein FP-injective right R-module then HomR( S,M)is a Gorenstein FP-injective right S-module,and if M is a Gorenstein FP-injective right S-module then M is a Gorenstein FP-injective right R-module. In addition,when R is right coherent and right GFPI-closed ring,some equivalent characterizations of Gorenstein FPinjective dimensions are given.
关 键 词:FP-内射模 GORENSTEIN FP-内射模 优越扩张环
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15