基于实时图像获取的两种匹配算法的比较  被引量:7

Comparison of Two Image Matching Algorithms Based on Real-time Image Acquisition

在线阅读下载全文

作  者:李胜辉[1] 张保龙[2] 史瑞芝[1] 

机构地区:[1]解放军信息工程大学,郑州450001 [2]郑州科技学院,郑州450000

出  处:《包装工程》2016年第9期120-123,151,共5页Packaging Engineering

摘  要:目的将FAST特征点检测算法与FREAK特征点描述算法相结合用于图像匹配,以改善图像识别算法在移动终端上对印刷品图像的识别性能。方法匹配的过程需要不断对摄像头获得的图像进行实时处理,但由于手机设备的处理器、内存等硬件条件有限,因此匹配算法的速度和效率是需要首要考量的指标。借鉴ORB的FAST特征点检测算法的思想,将FAST与FREAK特征点描述算法相结合用于图像匹配,然后与ORB算法的匹配速度和匹配精确度进行比较。结果结合了FAST特征点检测算法的FREAK算法,与ORB算法相比,匹配速度有了一定的提升,匹配精确度也基本可以满足纸质印刷品图像匹配的需求。结论在移动终端进行印刷品图像识别与匹配时,文中的研究能够在保证图像识别准确性的基础上使识别算法的运算速度得到一定的提升。The FAST feature point′s detection algorithm and the FREAK feature point′s description algorithm were combined and applied in image matching,to improve the image recognition performance of the image recognition algorithm in the mobile phone. Due to the constant need for real-time computation of the images obtained by the camera,and the limited hardware capabilities of the mobile phone,the matching algorithm′s accuracy,speed and efficiency should be emphasized. Referring to the thought of the FAST feature point′s detection algorithm of the ORB,this paper combined FAST with the FREAK feature point′s description algorithm to accomplish the function of image matching. And then the matching speed and matching accuracy were compared to those of the ORB algorithm. Experimental results showed that the FREAK algorithm combining the FAST feature points detection algorithm had higher matching speed than the ORB algorithm,and the matching accuracy could basically meet with the demand of image matching in paper printing. In terms of image recognition and matching using mobile phone,the research of this paper could improve the speed of the matching algorithm on the basis of satisfying the accuracy of image recognition.

关 键 词:FAST FREAK ORB 实时匹配 增强现实 

分 类 号:TS801.3[轻工技术与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象