检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]浙江海洋大学船舶与海洋工程学院,浙江舟山316022 [2]四川大学水力学与山区河流开发保护国家重点实验室,四川成都610065
出 处:《四川大学学报(工程科学版)》2016年第3期12-25,共14页Journal of Sichuan University (Engineering Science Edition)
基 金:国家自然科学基金资助项目(11572092,51369008,51279120);浙江省高校“钱江学者”人才基金资助项目;广西自然科学基金资助项目(2014GXNSFAA118322);大连理工大学海岸和近海国家重点实验室开放课题资助项目(LP1303)
摘 要:近20多年来,有关两类主要的水波深度平均方程(线性长波方程和缓坡类方程)的解析解研究取得了一系列进展。关于线性长波方程,对理想地形(水深函数为幂函数情形)和拟理想地形(水深函数为幂函数与一个常数之和的情形)构造了一系列准确解析解。其中,针对理想地形所构造的解析解一般为封闭解,而针对拟理想地形所构造的解析解一般只能写成Taylor级数或Frobenius级数的形式。关于缓坡类方程,于最近构造了一系列Taylor级数形式的准确解析解,解决了国际水波界40多年来的开问题。其中,针对分段单调且分段2阶光滑的2维地形以及分片单调且分片2阶光滑的轴对称3维地形,隐式的修正缓坡方程被成功转化为显式方程。本文对20多年来这两类深度平均水波方程解析求解的主要研究进展给予一个较全面系统的综述,并对该方面的研究前景做一些展望。In the past two decades, a series of exact analytical solutions to the two kinds of depth-averaged equations in water waves, i. e. , the linear long-wave equation and the mild-slope type equations, were constructed. For the linear long-wave equation, if the bottom topography is idealized with the water depth being a power function,then the related analytical solution can be written in a closed form. If the bottom topography is quasi-idealized with the water depth being a power function plus a constant,then the related analytical solu- tion can be expanded into a Taylor series or a Frobenius series. For the mild-slope type equations, a number of exact analytical solutions in the form of Taylor series were constructed recently, where the implicit modified mild-slope equation is successfully transformed into an explicit equation for both two-dimensional bathymetries and three-dimensional axisymmetric bathymetries with piecewise monotonicity and piecewise second-order smoothness. These advances were summarized and reviewed, and some prospects of the related research in the future were described.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.145.95.6