模糊熵在车载环境下语音端点检测中的应用  被引量:2

Application of fuzzy entropy in speech endpoint detection in car environments

在线阅读下载全文

作  者:恩德[1] 张凤磊 张昭[1] 忽胜强 

机构地区:[1]河南理工大学电气工程与自动化学院,河南焦作454000

出  处:《计算机工程与应用》2016年第10期147-150,共4页Computer Engineering and Applications

基  金:国家自然科学基金项目(No.61405055);国家安全监管总局安全生产重大事故防治关键技术科技项目(No.2012-307)

摘  要:为了提高车载噪声环境下语音端点检测的准确性,介绍了一种新的时间序列复杂性测度:模糊熵,并将其应用于语音信号的特征提取。分别以样本熵和模糊熵提取含噪语音信号的特征,使用双门限法对语音信号进行端点检测,特征门限值使用模糊C均值聚类算法和贝叶斯信息准则算法确定。仿真结果表明在车载噪声环境下与样本熵算法相比,模糊熵算法能更好地区分噪声信号和语音信号,具有更好的端点检测性能,相同环境下模糊熵算法的错误率比样本熵算法降低了16%以上。In order to improve the accuracy of speech endpoint detection in car environment, introduces a new measure of time series complexity, fuzzy entropy, and applies it to the characterization of speech. With sample entropy and fuzzy entropy respectively to the characterization of speech signals in car environments, and uses fuzzy C-means clustering algorithm and Bayesian information criterion algorithm, estimates the thresholds of the characteristics, then by using dual threshold method for endpoint detection. Experimental results demonstrate that, the fuzzy entropy method can distinguish the noise and speech signals better and has better performance of endpoint detection than sample entropy in car environments,the accuracy rate of fuzzy entropy method is superior to sample entropy method more than 16% in the same environments.

关 键 词:模糊熵 样本熵 语音端点检测 模糊C均值聚类算法 贝叶斯信息准则 

分 类 号:TN912.3[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象