一种用于行人检测的隐式训练卷积神经网络模型  被引量:6

A LATENT TRAINING MODEL OF CONVOLUTIONAL NEURAL NETWORKS FOR PEDESTRIAN DETECTION

在线阅读下载全文

作  者:黄咨 刘琦[1] 陈致远[1] 赵宇明[1] 

机构地区:[1]上海交通大学电子信息与电气工程学院系统控制与信息处理教育部重点实验室,上海200240

出  处:《计算机应用与软件》2016年第5期148-153,共6页Computer Applications and Software

基  金:国家自然科学基金项目(61175009);上海市产学研合作项目(沪CXY-2013-82)

摘  要:行人检测已经成为社会各领域里的热门研究课题之一。卷积神经网络CNNs(Convolutional neural networks)良好的学习能力使其学习得到的目标特征更自然,更有利于区分不同目标。但传统的卷积神经网络模型需要对整体目标进行处理,同时要求所有训练样本预先正确标注,这些阻碍了卷积神经网络模型的发展。提出一种基于卷积神经网络的隐式训练模型,该模型通过结合多部件检测模块降低计算复杂度,并采用隐式学习方法从未标注的样本中学习目标的分类规则。还提出一种两段式学习方案来逐步叠加网络的规模。在公共的静态行人检测库INRIA^([1])上的试验评测中,所提模型获得98%的检测准确率和95%的平均准确率。Pedestrian detection has become one of the hot research topics in various social fields. Convolutional neural networks have excellent learning ability. The characteristics of targets learned by these networks are more natural and more conducive to distinguishing different targets. However,traditional convolutional neural network models have to process entire target. Meanwhile,all the training samples need to be pre-labelled correctly,these hamper the development of convolutional neural network models. In this paper,we propose a convolutional neural network-based latent training model. The model reduces the computation complexity by integrating multiple part detection modules and learns the targets classification rules from unlabelled samples by adopting a latent training method. In the paper we also propose a two-stage learning scheme to overlay the size of the network step by step. Evaluation of the tests on public static pedestrian detection dataset,INRIA Person Dataset[1],demonstrates that our model achieves 98% of detection accuracy and 95% of average precision.

关 键 词:行人检测 隐式训练 部件检测 卷积神经网络 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象