检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]上海交通大学电子信息与电气工程学院系统控制与信息处理教育部重点实验室,上海200240
出 处:《计算机应用与软件》2016年第5期148-153,共6页Computer Applications and Software
基 金:国家自然科学基金项目(61175009);上海市产学研合作项目(沪CXY-2013-82)
摘 要:行人检测已经成为社会各领域里的热门研究课题之一。卷积神经网络CNNs(Convolutional neural networks)良好的学习能力使其学习得到的目标特征更自然,更有利于区分不同目标。但传统的卷积神经网络模型需要对整体目标进行处理,同时要求所有训练样本预先正确标注,这些阻碍了卷积神经网络模型的发展。提出一种基于卷积神经网络的隐式训练模型,该模型通过结合多部件检测模块降低计算复杂度,并采用隐式学习方法从未标注的样本中学习目标的分类规则。还提出一种两段式学习方案来逐步叠加网络的规模。在公共的静态行人检测库INRIA^([1])上的试验评测中,所提模型获得98%的检测准确率和95%的平均准确率。Pedestrian detection has become one of the hot research topics in various social fields. Convolutional neural networks have excellent learning ability. The characteristics of targets learned by these networks are more natural and more conducive to distinguishing different targets. However,traditional convolutional neural network models have to process entire target. Meanwhile,all the training samples need to be pre-labelled correctly,these hamper the development of convolutional neural network models. In this paper,we propose a convolutional neural network-based latent training model. The model reduces the computation complexity by integrating multiple part detection modules and learns the targets classification rules from unlabelled samples by adopting a latent training method. In the paper we also propose a two-stage learning scheme to overlay the size of the network step by step. Evaluation of the tests on public static pedestrian detection dataset,INRIA Person Dataset[1],demonstrates that our model achieves 98% of detection accuracy and 95% of average precision.
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28