数据中心启发式反向人工蜂群虚拟机整合节能策略  被引量:1

Virtual Machine Integration Energy Saving Strategy Based on Heuristic Backward Artificial Bee Colony in Data Centers

在线阅读下载全文

作  者:姜建华[1,2,3] 冯云钊 吴迪[1,3] 刘颖[1,3] 王丽敏[1,3] 

机构地区:[1]吉林财经大学管理科学与信息工程学院,长春130117 [2]吉林财经大学物流产业经济与智能物流实验室,长春130117 [3]吉林财经大学吉林省互联网金融重点实验室,长春130117

出  处:《吉林大学学报(理学版)》2016年第3期597-602,共6页Journal of Jilin University:Science Edition

基  金:国家自然科学基金(批准号:61572225;61402193);吉林财经大学科研项目(批准号:XJ2012007;2013006)

摘  要:针对数据密集型作业的特点,提出一个基于CPU和图形处理器(GPU)两个影响因素构建计算节点的能耗评估模型.该模型基于原虚拟机选择节能算法(ABCS)在虚拟机选择节能策略中的能效优势,进一步利用启发式思想改进蜂群优化算法,寻求虚拟机整合的最优解.在CloudSim 3.0云计算模拟器中的实验结果表明,启发式反向蜂群算法能在保证服务质量的前提下,有效降低虚拟机迁移次数,进而降低数据中心的能耗(节能25%~30%).In view of the characteristics of data intensive operations,we proposed an evaluation model based on CPU and graphics processing unit(GPU)as two influencing factors to calculate the energy consumption of the nodes.The model based on the selection of the original virtual machine(VM)energy saving algorithm in the virtual machine selection of energy-efficiency advantages,it further used heuristic idea to improve the bee colony optimization algorithm,and sought the best optimal solution of VM integration.The experimental results in the CloudSim 3.0cloud computing simulator show that the heuristic backward bee colony algorithm can effectively reduce the number of VM migration on the premise of guaranteeing the quality of service,and then reduce the energy consumption of data center(25%—30%).

关 键 词:数据中心 虚拟机迁移 虚拟机整合 人工蜂群算法 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象