检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李家伟[1]
出 处:《吉林大学学报(理学版)》2016年第3期609-612,共4页Journal of Jilin University:Science Edition
基 金:湖北省教育科学"十二五"规划重点项目(批准号:2014A047)
摘 要:为了提高风机故障的诊断精度,提出一种证据理论和支持向量机相融合的风机故障识别方法.首先从振动信号中提取Wigner-Ville谱熵作为风机故障诊断特征;然后采用不同核函数支持向量机进行训练,建立风机故障诊断的子分类器;最后采用DS证据理论对子分类器的输出结果进行融合,并对其性能进行仿真测试.实验结果表明,该方法可以充分利用全部故障信息,诊断结果更接近期望值,诊断效果优于其他风机故障诊断方法.In order to improve the accuracy of the fan fault diagnosis,the author presented a new method of fan fault diagnosis which was the combination of evidence theory and support vector machine.Firstly, Wigner-Ville spectrum entropy was extracted from the vibration signal as characteristic of fan fault diagnosis.Secondly,sub-classifier of fan fault diagnosis was established by using different kernel function support vector machines.Finally,the output results of sub-classifier were fused by DS evidence theory,and the performance was simulated and tested.The experimental results show that the proposed method can make full use of all fault information,and the diagnostic results are closer to the expected value,and the diagnosis effect is better than that of other fan fault diagnosis methods.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117