融合两类跟踪框架优点的红外目标跟踪算法  

Infrared Target Tracking Based on Particle Filter and Mean Shift

在线阅读下载全文

作  者:朱洪翔[1] 董青[1] 张振华[1] 

机构地区:[1]中国飞行试验研究院,西安710089

出  处:《计算机测量与控制》2016年第5期207-208,212,共3页Computer Measurement &Control

摘  要:基于粒子滤波的算法模型框架,针对红外的目标成像与背景对比度低、背景复杂等问题,进行提取目标灰度特征,通过对系统概率的密度函数的采样集进行了预测和更新,来逼近系统的后验密度概率,初步确定目标位置,再融合均值漂移算法进行小区域精确搜索,确定目标位置;同时,通过调整均值漂移的算法和函数的带宽,对于红外目标有阻挡情况下的识别能够得到有效处理;通过仿真得到该模型具有算法高效、去除粒子的退化,并且对于有遮挡的红外目标能够进行实时稳定地跟踪。According to problems of cluttered environment or the low contrast between infrared target imaging and background,we extract the gray characteristics of target and use the particle filter algorithm which recursively forecast and update the sample sets of the state space to approximate the posterior density probability.In order to further increase the accuracy of tracking,we fuse the Mean Shift algorithm to search for target in local area.The bandwidth of kernel function in Mean Shift algorithm can also deal with the target occlusion problem effectively.Experimental results indicate the proposed method can not only improve the efficiency of the algorithm and overcome the particle degeneracy phenomenon,but also has good performance in occlusion.

关 键 词:粒子滤波 均值漂移 红外目标跟踪 抗遮挡 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象