改进的认知诊断模型项目功能差异检验方法——基于观察信息矩阵的Wald统计量  被引量:14

An improved method for differential item functioning detection in cognitive diagnosis models: An application of Wald statistic based on observed information matrix

在线阅读下载全文

作  者:刘彦楼[1] 辛涛[1,2] 李令青[3] 田伟 刘笑笑[1] 

机构地区:[1]北京师范大学发展心理研究所,北京100875 [2]中国基础教育质量监测协同创新中心,北京100875 [3]泰山学院教师教育学院,山东泰安271000

出  处:《心理学报》2016年第5期588-598,共11页Acta Psychologica Sinica

基  金:国家自然科学基金面上项目(31371047);中央高校基本科研业务费专项资金资助(SKZZX2013028)

摘  要:Hou,de la Torre和Nandakumar(2014)提出可以使用Wald统计量检验DIF,但其结果的一类错误率存在过度膨胀的问题。本研究中提出了一个使用观察信息矩阵进行计算的改进后的Wald统计量。结果表明:(1)使用观察信息矩阵计算的这一改进后的Wald统计量在DIF检验中具有良好的一类错误控制率,尤其是在项目具有较高区分能力的时候,解决了以往研究中一类错误率过度膨胀的问题。(2)随着样本量的增加以及DIF量的增大,使用观察信息矩阵计算Wald统计量的统计检验力也在增加。In cognitive diagnostic models(CDMs), differential item functioning(DIF) refers to the probabilities of success of an item being different for examinees with the same attribute mastery pattern in the groups. The detection of DIF is an important step to ensure the fairness and validity of results from CDMs for all groups. Hou et al.(2014) proposed that the Wald statistic can be used to detect DIF in CDMs. Unfortunately, their results revealed that the Wald statistic based on the information matrix estimation method developed by de la Torre(2009, 2011) yielded inflated Type I error rates. However, Li and Wang(2015) found that the Type I error rates of the Wald statistic in which MCMC algorithms were implemented were slightly inflated in their study under the same conditions. In this study, we proposed an improved Wald statistic based on the observed information matrix for DIF assessment. As a general demonstration, we took the log-linear cognitive diagnosis model(LCDM; Henson et al., 2009) as an example. In this simulation study, in order to compare the results with previous studies(e.g., Hou et al.,2014; Li Wang, 2015), we followed the simulation design used by Hou et al.(2014), except that we implemented the observed or cross-product(XPD) information matrix in the Wald statistic computation. Parameters set in the studies were: the test length at 30, the number of attributes at 5, and the maximum number of required attributes for an item at 3. Binary item response data were generated from the DINA model. Three sets of true item parameter values were considered( g j ?s j?.1,.2, or.3) for the reference group. Two DIF sizes:.05 and.10, and two types of DIF: uniform and nonuniform, were manipulated. Two sample sizes were considered, 500 and 1,000. Each condition was replicated 1000 times, and the estimation code was written in R(R Core Team, 2015). The simulation results showed that:(1) for the relatively discriminating items, Wald statistic had accurate Type

关 键 词:Wald统计量 项目功能差异 认知诊断模型 观察信息矩阵 经验交叉相乘信息矩阵 

分 类 号:B841[哲学宗教—基础心理学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象