Carbocisteine attenuates TNF-α-induced inflam- mation in human alveolar epithelial cells in vitro through suppressing NF-KB and ERK1/2 MAPK signaling pathways  被引量:11

Carbocisteine attenuates TNF-α-induced inflam- mation in human alveolar epithelial cells in vitro through suppressing NF-KB and ERK1/2 MAPK signaling pathways

在线阅读下载全文

作  者:Wei WANG Wei-jie GUAN Rong-quan HUANG Yan-qing XIE Jin-ping ZHENG Shao-xuan ZHU Mao CHEN Nan-shan ZHONG 

机构地区:[1]State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute ofRespiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China [2]Guangzhou BaiYunShan Pharmaceutical General Factory, Guangzhou 510515, China [3]Department of Pathology, Guangzhou Medical University, Guangzhou510182, China

出  处:《Acta Pharmacologica Sinica》2016年第5期629-636,共8页中国药理学报(英文版)

摘  要:Aim: We previously proven that carbocisteine, a conventional mucolytic drug, remarkably reduced the rate of acute exacerbations and improved the quality of life in the patients with chronic obstructive pulmonary disease. In this study we investigated the mechanisms underlying the anti-inflammatory effects of carbocisteine in human alveolar epithelial cells in vitro. Methods: Human lung adenocarcinoma cell line A549 was treated with TNF-α (10 ng/mL). Carbocisteine was administered either 24 h prior to or after TNF-α exposure. The cytokine release and expression were measured using ELISA and qRT-PCR. Activation of NF-κB was analyzed with Western blotting, immunofluorescence assay and luciferase reporter gene assay. The expression of ERK1/2 MAPK signaling proteins was assessed with Western blotting. Results: Carbocisteine (10, 100, 1000 pmol/L), administered either before or after TNF-α exposure, dose-dependently suppressed TNF-α-induced inflammation in A549 cells, as evidenced by diminished release of IL-6 and IL-8, and diminished mRNA expression of IL-6, IL-8, TNF-α, MCP-1 and MIP-1β. Furthermore, pretreatment with carbocisteine significantly decreased TNF-α-induced phosphorylation of NF-κB p65 and ERK1/2 MAPK, and inhibited the nuclear translocation of p65 subunit in A549 cells. In an NF-κB luciferase reporter system, pretreatment with carbocisteine dose-dependently inhibited TNF-α-induced transcriptional activity of NF-κB. Conclusion: Carbocisteine effectively suppresses TNF-α-induced inflammation in A549 cells via suppressing NF-KB and ERK1/2 MAPK signaling pathways.Aim: We previously proven that carbocisteine, a conventional mucolytic drug, remarkably reduced the rate of acute exacerbations and improved the quality of life in the patients with chronic obstructive pulmonary disease. In this study we investigated the mechanisms underlying the anti-inflammatory effects of carbocisteine in human alveolar epithelial cells in vitro. Methods: Human lung adenocarcinoma cell line A549 was treated with TNF-α (10 ng/mL). Carbocisteine was administered either 24 h prior to or after TNF-α exposure. The cytokine release and expression were measured using ELISA and qRT-PCR. Activation of NF-κB was analyzed with Western blotting, immunofluorescence assay and luciferase reporter gene assay. The expression of ERK1/2 MAPK signaling proteins was assessed with Western blotting. Results: Carbocisteine (10, 100, 1000 pmol/L), administered either before or after TNF-α exposure, dose-dependently suppressed TNF-α-induced inflammation in A549 cells, as evidenced by diminished release of IL-6 and IL-8, and diminished mRNA expression of IL-6, IL-8, TNF-α, MCP-1 and MIP-1β. Furthermore, pretreatment with carbocisteine significantly decreased TNF-α-induced phosphorylation of NF-κB p65 and ERK1/2 MAPK, and inhibited the nuclear translocation of p65 subunit in A549 cells. In an NF-κB luciferase reporter system, pretreatment with carbocisteine dose-dependently inhibited TNF-α-induced transcriptional activity of NF-κB. Conclusion: Carbocisteine effectively suppresses TNF-α-induced inflammation in A549 cells via suppressing NF-KB and ERK1/2 MAPK signaling pathways.

关 键 词:CARBOCISTEINE human alveolar epithelial cells TNF-Α NF-KB ERK1/2 cytokines ANTI-INFLAMMATION 

分 类 号:Q257[生物学—细胞生物学] Q255

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象