检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]安徽师范大学数学计算机科学学院,芜湖241000
出 处:《工程数学学报》2016年第3期279-286,共8页Chinese Journal of Engineering Mathematics
基 金:国家自然科学基金(11301007);安徽省自然科学基金(1408085QA05)~~
摘 要:欧拉方程是流体力学中非常重要的模型,被广泛应用于许多领域.构造它的精确解是数学物理中非常有意义的工作.精确解可以为理解它的非线性现象和物理意义提供具体的例子.本文旨在通过不变子空间方法构造可压缩欧拉方程的精确解.在变量变换意义下,由不变条件给出与可压缩方程相关的不变子空间;在这些不变子空间中,它被约化为一阶常微分方程组;通过求解这些常微分方程组,最终得到可压缩欧拉方程的一些精确解.The Euler equations are a very important model in fluid mechanics, which have been wide used in many areas. Constructing their explicit solutions is a very significant part in mathematical physics. Explicit solutions can provide the concrete examples to understand their nonlinear phenomena and physical implications. This paper is devoted to construct the explicit solutions to compressible Euler equations by using the invariant subspace method. In the sense of variable changes, the invariant conditions yield the invariant subspaces related to compressible Euler equations. On these invariant subspaces, they are reduced to systems of first-order ordinary differential equations. Then some explicit solutions of compressible Euler equations are obtained by solving these systems.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222