由回差阵奇异值求稳定裕度的退化算法  被引量:1

Degraded algorithm for determining stability margin by using singular value of the return difference matrix

在线阅读下载全文

作  者:李信栋[1] 苟兴宇[1,2] 

机构地区:[1]北京控制工程研究所,北京100190 [2]空间智能控制技术重点实验室,北京100190

出  处:《控制理论与应用》2016年第4期460-465,共6页Control Theory & Applications

基  金:国家自然科学基金项目(41274041)资助~~

摘  要:本文研宄使用回差阵奇异值求多输入多输出(MIMO)线性定常系统稳定裕度的方法.首先对此方法进行退化分析,得到求解单输入单输出(SISO)线性定常系统稳定裕度的算法步骤.在此基础上,讨论退化所得算法与传统稳定裕度的关系;进一步地,详细分析此退化算法相比传统稳定裕度的优势,进而指出当系统的增益和相位同时变化时,系统Nyquist曲线g(jω)到临界点(-1,j0)的最短距离min|1+g(jω)|可作为一种更加合理的稳定裕度指标.最后,通过对实例进行数值仿真,说明本文所提退化算法可以克服传统稳定裕度局限性,同时与传统稳定裕度结合得到比较完整的SISO线性系统稳定裕度衡量体系.We investigate the algorithm for determining the stability margins for multi-input multi-output(MIMO)linear time-invariant systems by using singular values of the return difference matrix.First,we consider the degraded algorithm to develop the procedures for determining stability margins for single-input single-output(SISO) linear timeinvariant systems.On this basis,we investigate the relationship between the results obtained from the degraded algorithm and the traditional stability margins.Next,we analyze in detail the advantages of the degraded algorithm over the traditional methods in determining the stability margins and point out that,when the gain and phase are varying simultaneously,the shortest distance min|1 + g(jω)| between the Nyquist plot g(jω) and the critical point(—1,j0) can be considered as a more appropriate stability margin index.Finally,the numerical simulation results of practical examples demonstrate that the proposed algorithm is able to overcome the limitations of the traditional methods.Meanwhile,a more perfect stability margin measurement system can be obtained by incorporating the proposed degraded stability margins with the classical stability margin.

关 键 词:回差阵奇异值法 稳定裕度 奈奎斯特曲线 鲁棒性 

分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象