基于El-Nabulsi模型的分数阶Lagrange系统的Lie对称性与守恒量  被引量:3

Lie symmetry and conserved quantity of fractional Lagrange system based on El-Nabulsi models

在线阅读下载全文

作  者:张孝彩 张毅[2] 

机构地区:[1]苏州科技大学数理学院,江苏苏州215009 [2]苏州科技大学土木工程学院,江苏苏州215011

出  处:《中山大学学报(自然科学版)》2016年第3期97-101,105,共6页Acta Scientiarum Naturalium Universitatis Sunyatseni

基  金:国家自然科学基金资助项目(11272227;11572212);江苏省普通高校研究生科研创新计划资助项目(KYZZ_0350);苏州科技大学研究生科研创新计划资助项目(SKCX14_058)

摘  要:研究基于El-Nabulsi模型的分数阶Lagrange系统的Lie对称性与守恒量。基于按Riemann-Liouville积分拓展的类分数阶变分问题导出El-Nabulsi模型的D'Alembert-Lagrange原理,得到系统的运动微分方程;给出分数阶Lie对称性的定义和判据,建立了Lie对称性确定方程,并提出广义Hojman定理,给出广义Hojman守恒量存在的条件及其形式;最后,建立了广义Noether定理,给出分数阶Lie对称性导致Noether守恒量的条件及其形式,并给出两个算例以说明结果的应用。The Lie symmetry and the conserved quantity of fractional Lagrange system based on ElNabulsi models are studied. Firstly,the D'Alembert-Lagrange principle of the El-Nabulsi models is deduced based on the fractional action-like variational problem which is expanded by the Riemann-Liouville integral,and the differential equations of motion of the system are obtained. Secondly,the definition and the criterion of the Lie symmetry are given,the determination equations of the Lie symmetry of the system are established,and the generalized Hojman theorem is put forward. At the same time,the existence condition and the form of the generalized Hojman conserved quantity are obtained. Then,the generalized Noether theorem is established,the existence condition and the form of the Noether conserved quantity led by the Lie symmetry are given. Finally,two examples are given to illustrate the application of the results.

关 键 词:分数阶Lagrange系统 El-Nabulsi模型 LIE对称性 守恒量 

分 类 号:O316[理学—一般力学与力学基础]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象