检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]苏州科技大学数理学院,江苏苏州215009 [2]苏州科技大学土木工程学院,江苏苏州215011
出 处:《中山大学学报(自然科学版)》2016年第3期97-101,105,共6页Acta Scientiarum Naturalium Universitatis Sunyatseni
基 金:国家自然科学基金资助项目(11272227;11572212);江苏省普通高校研究生科研创新计划资助项目(KYZZ_0350);苏州科技大学研究生科研创新计划资助项目(SKCX14_058)
摘 要:研究基于El-Nabulsi模型的分数阶Lagrange系统的Lie对称性与守恒量。基于按Riemann-Liouville积分拓展的类分数阶变分问题导出El-Nabulsi模型的D'Alembert-Lagrange原理,得到系统的运动微分方程;给出分数阶Lie对称性的定义和判据,建立了Lie对称性确定方程,并提出广义Hojman定理,给出广义Hojman守恒量存在的条件及其形式;最后,建立了广义Noether定理,给出分数阶Lie对称性导致Noether守恒量的条件及其形式,并给出两个算例以说明结果的应用。The Lie symmetry and the conserved quantity of fractional Lagrange system based on ElNabulsi models are studied. Firstly,the D'Alembert-Lagrange principle of the El-Nabulsi models is deduced based on the fractional action-like variational problem which is expanded by the Riemann-Liouville integral,and the differential equations of motion of the system are obtained. Secondly,the definition and the criterion of the Lie symmetry are given,the determination equations of the Lie symmetry of the system are established,and the generalized Hojman theorem is put forward. At the same time,the existence condition and the form of the generalized Hojman conserved quantity are obtained. Then,the generalized Noether theorem is established,the existence condition and the form of the Noether conserved quantity led by the Lie symmetry are given. Finally,two examples are given to illustrate the application of the results.
关 键 词:分数阶Lagrange系统 El-Nabulsi模型 LIE对称性 守恒量
分 类 号:O316[理学—一般力学与力学基础]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3